
GITOPS FOR ABSOLUTE
BEGINNERS

AUTHOR: TWAIN TAYLOR

eBOOK

2

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

You’ve likely heard of GitOps at a KubeCon, or read about it online, or heard about it in a
conversation with your colleague. You’ve been curious about the idea, but have not fully
understood it yet. You’re ready to take the first steps to GitOps adoption, but don’t know where
to start. If this sounds like you, this guide is the best starting point for your GitOps journey.

Who this guide is for

 A quick way to assess your organization’s current situation and readiness
for GitOps adoption

 An overview of the key benefits of GitOps
 The four key principles of GitOps as defined by the Open GitOps project
 Specific directions on how to get started with GitOps no matter if your organization

is at a beginner or advanced level with DevOps

What you’ll get in this guide

▼

3

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

You have a CI/CD pipeline
If you come from the world of DevOps, you have
a fairly functional CI/CD pipeline in place. This is a
great starting point for GitOps. The problem with
CI/CD is that it isn’t as automated as it promises to
be. This is because of the numerous manual tasks
required at each step. GitOps extends CI/CD with
end-to-end automation.

Like every software methodology before it, GitOps requires organizations to be ready for its adoption. Whether you
come from a large enterprise setup, or are part of a scrappy startup team, there are ways to tell if your organization
is ready for GitOps. Here are signs that you’re ready to adopt GitOps:

Signs you’re ready for GitOps

1
You’ve adopted the cloud
You run infrastructure and applications in one of the
cloud vendors like AWS, or Azure, and may even be
considering multicloud setups. If you’ve used a lift
and shift model to migrate your systems from on-
premise to cloud, you may still be building software
using the traditional waterfall approach. If you feel
you’re not making the most of the cloud, GitOps is
a great way to change this situation.

2

Code

B
ui

ld

Test

Releas
e

Deploy

O
perate

Monitor

Plan

CDCI

Build

ID
E

Test

Deployment

M
onitoring

Management

Continuous
Integration

Kubernetes
GitOps

GIT

4

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

You run Kubernetes clusters in production
You have been riding the containerization wave,
and are an early adopter of Kubernetes. However,
it’s not all smooth sailing. Your teams struggle with
the complexity of Kubernetes. You find yourself
struggling to keep up with the latest fad in cloud-
native technology. GitOps can bring a lot of sanity
and clarity to your Kubernetes management.

3 Your team’s developer productivity can be
improved
Developer experience (DX) needs to be elegant
and effortless for developers to be productive. This
includes making it easy for developers to access
the resources they need on-demand, without the
assistance of Ops. This, in turn, requires that Ops
does not provision these resources manually, but
instead has them all templatized and automated.
GitOps excels at enabling this.

4

Your business needs faster deployment velocity
The 2020 DORA report talks about how ‘developer
velocity equates to business success.’ In order
to have more frequent deployments, you need
to automate every step of the pipeline from start
to end. This is easier said than done. GitOps
shines here allowing for advanced deployment
automation.

5
You’re big on Git
Your Dev teams collaborate using Git platforms like
GitHub and BitBucket. The branching structure,
pull/merge requests, and in-built versioning are
things you enjoy about Git. However, you’ve felt
there’s more to Git than this. You’d like to get the
most out of these Git tools and need the right
processes to complement them. That is just what
GitOps brings to the table.

6

Your Work

Main

Someone Else’s Work

The more you can relate to these signs, the more
ready your organization is to adopt GitOps. But before
that, why should you care about GitOps? There are a
bunch of reasons.

https://www.weave.works/blog/gitops-accelerates-self-service

5

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Consistent, standardized workflows
With GitOps, Git becomes the single source of truth.
This avoids duplication of work, compartmentalizing
of knowledge, and communication gaps. Software
delivery processees become seamless as silos are
broken across Dev and Ops.

GitOps has many strengths and benefits that appeal to different organizations. In the list below, you’re bound to find
something that resonates with you.

Benefits of GitOps

1 Everything auditable, automatically
GitOps leverages Git’s built-in versioning
capabilities to track every change to every
repository. These changes greatly facilitate
auditing and compliance.

2

Predictable operations with end-to-end
pipeline automation
GitOps prescribes completely automated
operations. This means right after a pull request is
merged by a developer, the change is automatically
applied into production (unless it’s a bad change,
of course. More on this later). This automation
reduces human error and makes operations more
predictable.

3

Single Source
of Truth

6

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Greater developer productivity
A natural offshoot of automation is greater
deployment velocity. It’s no longer just the tech
innovators like Google and Amazon who can
deploy on-demand, GitOps brings this ability
to any organization.

4 Avoid drift in production
GitOps uses agents that watch production clusters for
any deviation or drift from the desired state described
in Git. This drift is automatically corrected by reverting
to the original state.

5

Greatly enhanced DX
Developers need not wait for Ops to provision
resources. They can simply pick from ready-made
templates, and spin up cloud resources as and
when needed. This enables them to move faster
from code to production.

6
Deployment guardrails
GitOps allows for fast and easy rollbacks if a new
deployment breaks production or is otherwise
suboptimal. But how can teams set deployment
guardrails that stop errors even before they reach
production? Using a policy engine such as Magalix,
configuration that could be a security weakness,
reduce application resilience or not conform to coding
standards can be detected when a pull request
is submitted. Magalix also includes an admission
controller that ultimately blocks configuration with
policy violations from being applied.

7

Improve reliability with progressive delivery
GitOps, with the help of Flagger, enables progressive
delivery approaches like canary releasing. These are
complex to implement outside of GitOps. On the other
hand, GitOps makes complex delivery strategies easy
to implement as every minute detail is described and
controlled in Git.

If you’re excited about the possibilities with GitOps,
it’s time to dive into what GitOps actually is.

8In our Whitepaper “How GitOps boosts business
performance: The Facts” we examine how GitOps
positively influences DORA metrics.

Surprising fact: Speed and Stability
support each other!

https://www.magalix.com/
https://go.weave.works/DORA_GitOps_WP.html?LeadSource=Web%20Content&CampaignID=7014M000001z7ko&LSD=Blog
https://go.weave.works/DORA_GitOps_WP.html?LeadSource=Web%20Content&CampaignID=7014M000001z7ko&LSD=Blog
https://go.weave.works/Webcontent-WP-GitOps-Boosts-Business-Performance.html

7

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Declarative
“A system managed by GitOps must have its
desired state expressed declaratively.”

‘State’ is the key word here. Every system (and
every part of a system) in GitOps has a desired
state. This desired state is the end goal of all
software operations conducted within the system.
GitOps gives more importance to this desired state
than the means of attaining the state. Accordingly,
systems are described in Git, and those
descriptions are implemented by deployment tools
using API calls, scripts, and more. A fundamental
goal of GitOps is to describe everything in Git.

In mid-2021, the GitOps movement took a big step towards standardization as the CNCF (Cloud Native
Computing Foundation) commissioned the OpenGitOps project. This project was created to bring vendors
and customers together around the idea of GitOps.

The Principles of GitOps

1

Versioned & Immutable
“Desired state is stored in a way that enforces
immutability, versioning and retains a complete
version history.”

v0.1 v0.2

Git is the preferred store of the desired state
mentioned above. State is ‘immutable’ in that
any change to a new state requires a complete
replacement of the previous state, not a change.
Every time this happens, the action is recorded
automatically (versioning). With the number of
users, repositories, and changes taking place, it is
essential to have a clear audit chain for the sake of
system security as well as regulatory compliance.

2

The team’s first task was to define four foundational principles of GitOps, which are as follows:

https://opengitops.dev/

8

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Pulled automatically
“Software agents automatically pull the desired
state declarations from the source.”

Traditionally, developers push changes to a
production system. With GitOps, it’s the reverse.
A software agent acts as a bridge between a Git
repository and production environment. This agent
watches for any changes to the Git repository
and automatically ‘pulls’ every new change from
the repository and ‘merges’ it into the production
environment. This automation is a crucial difference
between GitOps and its predecessor CI/CD.

4 Continuously reconciled
“Software agents continuously observe the actual
system state and attempt to apply the desired
state.”

Systems are continuously changing in production.
This means that as soon as changes are deployed,
they tend to drift. GitOps prevents drift from
occurring by automatically reconciling the live
system according to its desired state in Git. This is
a powerful feature of GitOps and has many ripple
benefits in terms of system security, performance,
and more.

For a more detailed and formal description of these
four GitOps principles, please refer to the Glossary
created by the OpenGitOps project.

5

MUTABLE MODEL

IMMUTABLE MODEL

Deploy
update
upgrate

Deploy

To update,
create a new

server

Destroy
the old
server

https://github.com/open-gitops/documents/blob/v1.0.0/GLOSSARY.md

9

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Though software delivery pipelines vary by organization,
there are common traits that most GitOps pipelines share.
It starts with the developer merging a pull request from
their development environment. From here, a GitOps
agent like Flux notices the change and ensures that it is
compatible with the production system. If a change fails, it
is not allowed to be deployed. If it passes, it is automatically
applied to the target production environment.

A typical GitOps pipeline

Testing
Cluster

App

Config
Repo

K8s
Manifest

Container
Registry

Code
Build

Code
Repo

Source
Automated TestAutomated Deploy

This is a basic GitOps flow, but there can be numerous
additional steps beyond these. For example, the Ops team
can set the flow to require a manual review of certain
types of changes before they can be deployed. Or, after
Flux approves of a change, the progressive delivery tool
Flagger could take over and initiate a complex canary
release sequence. The possibilities are endless, but a
simple GitOps flow starts with Git, is carried forward by
an agent like Flux, and ends in a production environment
(usually a Kubernetes cluster).

Push versus Pull pipelines for CICD

https://www.weave.works/technologies/gitops/#pull-vs-push-pipeline

10

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

The annual State of DevOps report released by Puppet and Google Cloud groups organizations into three
DevOps maturity levels - low, mid, and high.

How to adopt GitOps even if you don’t

We’ll use these same categories to outline
what’s required for your organization to
adopt GitOps from where you’re at today.

Low Mid High

Deployment
frequency

Lead time
for changes

MTTR

Changes
failure rate

Monthly or
less often

Between a week
and 6 months

Less than
a week

Less
than 15%

Between daily
and weekly

Less than
a week

Less than
a day

Less
than 15%

On Demand
(whenever we want)

Less than
a hour

Less than
a hour

Less
than 15%

https://www.weave.works/highlights-2021-state-of-devops

11

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Mid DevOps maturity
This category consists of the largest group of
organizations. They are usually stuck in the
middle with routine practices and are unable to
breakthrough to the high level.

If your organization falls in this category, you likely
have an existing CI/CD pipeline, perhaps with Jenkins.
This is a great starting point. It’s most likely your
systems are still not fully described in Git, and this
will be a priority. From here, you should look to drive
greater automation with the help of GitOps agents.

You should look to organize your teams into
separate Platform and Application Development
teams as recommended by the 2021 State of
DevOps report. The Platform team should aim
to move from manual resource provisioning to
automated templates and packages.

In terms of tooling, you could opt for Weave GitOps
Core, or the more complete solution - Weave
GitOps Enterprise. This has all you need to get
started and up to speed with GitOps.

2

Weave GitOps Enterprise

Low DevOps maturity
For organizations that are new to the cloud, or
DevOps, the first step to GitOps adoption is to
start using Git for developer collaboration. It is
key to standardize this across both Dev and Ops
teams. This will require Ops teams to familiarize
themselves with how Git works. From here, the next
step is to define your systems as much as possible
in Git repositories.

A change of culture is the hardest part for any
organization. This is true with GitOps adoption
as well. In this stage, training and documentation
are essential to ensure the entire organization
is on board with the GitOps adoption plan. Key
stakeholders need to buy into the idea, and every
team member needs to play their part in learning
and practicing the core GitOps principles.

Once you’re ready, you can get started with Flux, or
even better, the open source Weave GitOps Core.
This will give you the bare essentials required to
get started with GitOps.

1

Weave GitOps Core

https://www.weave.works/highlights-2021-state-of-devops
https://www.weave.works/highlights-2021-state-of-devops
https://www.weave.works/product/gitops-enterprise/
https://www.weave.works/product/gitops-enterprise/
https://www.weave.works/product/gitops-enterprise/
https://www.weave.works/product/gitops-core/
https://www.weave.works/product/gitops-core/

12

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

High DevOps maturity
If your organization belongs to this category,
it’s likely you’re already an advanced user of
Kubernetes and its ecosystem of cloud-native
tooling. You already believe in the Kubernetes
approach of declarative ops. GitOps is the best way
to realize this goal of declarative ops.

You could start by avoiding manual changes to
Kubernetes clusters, and instead, deploy changes
via pull requests only. Establish a working cadence
of ‘pull requests’ and ‘merges’ between Dev and
Ops teams. You likely already automate parts of
your supply chain. The next step is to use GitOps
to implement end-to-end automation. Once these
tasks are checked off, you can turn your attention
to progressive delivery. This will involve a tool like
Flagger, and service mesh like Istio or Linkerd.

3 Weave GitOps Enterprise is the way to go as it
includes Flux and Flagger, along with the other
required components like Helm, and ready-made
plugins for Prometheus and Istio. Weave GitOps
Enterprise has all you need to achieve even higher
levels of DevOps maturity.

https://www.weave.works/product/gitops-enterprise/

13

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

1. Each organization takes its own path with GitOps
adoption. You’ll need to assess where your organization
stands in its readiness for GitOps. GitOps has numerous
benefits that improve operational efficiency, deployment
velocity, collaboration, and security and compliance.
Knowing these benefits will help you better advocate the
need for GitOps to your key stakeholders.

2. The Open GitOps project has laid out four fundamental
principles of GitOps. Familiarize yourself with the key
terms and ideas in these principles and begin applying
them within your organization.

Key takeaways

3. Compare your current software supply chain with
the typical GitOps pipeline, and look for areas of
improvement, and opportunities for change.

4. Whether you’re new to DevOps, or an advanced
Kubernetes user, there is a GitOps adoption path for you.
Weave GitOps Core is great if you want to test the waters
with GitOps, but if you’d like to cut short your adoption
time frame, consider Weave GitOps Enterprise.

5. GitOps works not just for the application layer, but for the
infrastructure layer as well. As you leverage Weave GitOps
Enterprise, you’ll find that you progress much faster to
higher levels of GitOps maturity.

14

G
IT

O
P

S
 F

O
R

 A
B

S
O

LU
T

E
 B

E
G

IN
N

E
R

S

Weave GitOps Core works with any Kubernetes cluster
on your workstation or in the cloud:

⊲ Kubernetes in Docker (kind)
⊲ K3d / K3s
⊲ miniK8s
⊲ Minikube
⊲ AWS EKS
⊲ Azure AKS
⊲ Google GKE

Use these steps to get started with Weave GitOps Core:
⊲ Bootstrap Flux onto your Kubernetes cluster
⊲ Install Weave GitOps Core via the Helm chart;
 with GitOps of course

Now you are ready to install your first application to
Kubernetes, one pull request at a time.

⊲ Add your Git repository
⊲ Add a Kustomization from your Git repository
⊲ Git add, commit and push

Try it yourself

You can view the deployment state of your applications,
source synchronisation status and the health of the Flux
system components on the Weave GitOps dashboard.
Alternatively from the command line with:

$ flux get all

https://fluxcd.io/docs/installation/
https://docs.gitops.weave.works/docs/getting-started/
https://www.youtube.com/watch?v=BEyPCVnOEpU

	pHome
	pSigns
	p benefit
	pPrincip
	pPrincip2
	pHow
	pHow2
	pHow3
	PTyp
	Psing2
	pKey
	pTry it

	Botón 7:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 8:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 9:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 17:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 18:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 19:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 20:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 27:
	Página 2:
	Página 3:
	Página 4:
	Página 5:
	Página 6:
	Página 7:
	Página 8:
	Página 9:
	Página 10:
	Página 11:
	Página 12:
	Página 13:
	Página 14:

	Botón 1:
	Botón 6:
	Botón 21:
	Botón 22:
	Botón 26:
	Botón 23:
	Botón 28:
	Botón 24:
	Botón 25:
	Botón 31:

