
WHY SELF-SERVICE
IS KEY TO DEVELOPER
PRODUCTIVITY

weave.works

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

2
▼

DevOps has become widely popular as it has met organizations’ goals for application quality, team
productivity, and cost optimization. However, there is a flip side to the story of DevOps’ success.
While DevOps aspired to meet the mantra ‘you build it, you run it’, this wasn’t the case. In reality,
developers ended up relying on Ops to manually provision and maintain infrastructure. To add to
this complexity, they also have to manage multiple tools, frameworks, and repositories across the
software lifecycle. This slowed down release cycles and exposed the other side of DevOps.

With the rise of cloud-native application development, application architecture has become
more complex, as has the software supply chain. Kubernetes, though powerful, adds layers of
new components and new ways of building and shipping applications. These challenges call for
improving Developer Experience (DX) so organizations can accelerate delivery.

According to Gartner, “Developer experience refers to all aspects of interactions between
developers and the tools, platforms, processes and people they work with, to develop and deliver
software products and services.”

This encompasses all activity from the time code is written to the time it is shipped to production.
Developers are most productive when they have the autonomy to move quickly and seamlessly
from concept to code to production. This can be achieved through a ‘self-service developer
platform’ which, as the phrase implies, is all about empowering developers to easily and reliably
release code with as little friction as possible. It’s about automating and abstracting away routine
Ops tasks. This makes developers less dependent on the Ops team to provision resources or move
code through the pipeline. The result is that developers do not need to switch contexts and can
focus on what they do best - writing code.

Gartner’s Take on Self-Service Developer Experience

Introduction

Developer self-service has the inherent benefit of bringing consistency and repeatability to
otherwise disparate processes and error-prone manual handoffs. The goal of self-service is
to ensure developers have an experience that makes ‘the right thing to do, the intuitive thing
to do.’ For example, the ability to self-serve pre-vetted open-source libraries from a trusted
component catalog improves governance, as well as developer experience.

As shown in the diagram below, a good developer experience is all about improving
developer journeys, optimizing for creative work, and making meaningful impact. The end
goal is to empower developers to ultimately improve team productivity and accelerate
innovation.

https://www.weave.works/

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

3

weave.works

▼

What a Bad Developer Experience Looks Like

The Gartner report explains how poor developer experience can lead to issues like governance
costs, non-uniformity between teams, and distraction from their actual focus on coding.

Gartner Report, Software Engineering Leader’s Guide to Improving Developer Experience, 2022.

While DevOps was conceptualized to eliminate the siloed development process by unifying
development and operations teams, it did little to scale development. Organizations struggle
to ship products faster due to the constant back-and-forth between the teams and a further
blockade of approvals.

When it’s time to deploy the application a developer has built, they need the appropriate
resources and environments provisioned. It involves multiple stakeholders and can take days
to finally have the resources provisioned. Friction between Developer and Ops teams often
arises. Developers are tasked with producing new and innovative products quickly and Ops
teams are tasked with maintaining reliable infrastructure while meeting the demands of all
stakeholders.

There is a growing awareness about the importance of developer experience, and how
to design it so it doesn’t hinder but enables developers to get more done. Let’s start with
examining what developers don’t deem as ideal.

https://www.weave.works/

weave.works

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

4
▼

Developers are frustrated with manual processes
Traditionally, developers follow ticket-based ops, which can take multiple days before
the team provides the resources. It involves the development team raising a ticket for
resources, which are assessed by Ops and forwarded to stakeholders for approval. In
some cases, meetings involving several stakeholders are held to explain and justify the
need for the required resources. The Ops team needs to conduct their own due diligence
to consider whether there is proper monitoring and security guardrails for these new
resources before they are provisioned. More mature organizations set Service Level
Objectives (SLOs) via SRE best practices to ensure no surprises later. All of this back and
forth can take weeks, not to mention the friction it can cause between developers and the
Ops team.

Following this elaborate process of gaining all approvals, the resources are finally
provisioned. The entire process is draining on developers and hinders them from their
main objective - writing code and delivering value to customers. Ops teams are stretched
thin catering to the various needs while doing their best to keep the systems compliant
and reliable.

Developers drown in tool sprawl
With complex processes come numerous tools as well. Developers are forced to manage
issues that arise from the use of highly complex tools that are held together by duct tape
integrations. They are tasked with controlling and managing cloud-native infrastructure
while their core competency is writing code and building software. Consequently, things
break all the time, and developers end up in firefighting mode rather than getting work
done.

Kubernetes newbies get left behind
While Kubernetes is seeing broad adoption across industries, one of the biggest
challenges facing the cloud-native ecosystem is the lack of Kubernetes knowledge among
developers. It can be quite a challenge to set up and maintain a Kubernetes environment
and developers are not as familiar with this new technology as their Ops counterparts.
As a result, many developers are forced to grapple with new jargon and concepts to
speak the same language as Ops does. Deploying simple cloud resources could involve
numerous steps and a steep learning curve. This again slows down developers and puts
additional burdens on them.

Caught in a loop of work duplication
Shoddy resource provisioning has real implications when an application reaches
production. When apps and services fail in production, SREs and Ops teams come back
to the development team to fix the issues that were caused due to incompatibilities,
bugs, and resource constraints. Developers end up having to refactor or rearchitect
parts or even the entire application and end up doing the same work all over again. This
duplication of work is frustrating for developers and eats into their productive hours. The
end result is application delivery is greatly delayed and lower-quality code makes it to
production.

1

2

3

4

https://www.weave.works/

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

5

weave.works

▼

What Makes for a Great Developer Experience?

The 2022 DORA report has identified five metrics that indicate the speed and
effectiveness of your software delivery. The five measures are Deployment Frequency,
Lead Time for Change, Mean Time to Recovery, Reliability, and Change Failure Rate. Of
these metrics, the first two can be a measure and indicate a good developer experience.

Developers want to be able to deploy changes frequently, and greatly reduce the friction
and time between the commit and deploy stages of the supply chain. In order to do this, it
takes building a highly usable platform that reduces context switching, minimizes decision
fatigue, and inherently includes speed of development, safety, innovation, and iteration.

According to the report, 63% of organizations have adopted internal platforms as a way to
enable greater developer autonomy. An internal developer platform empowers Ops teams
to make resource templates readily available for development teams. Such a platform would
give developers the ability to focus on writing code, and deploying this code more frequently
- essentially, a better developer experience.

Lead Time Change Failure RateR eliability

Deployment Frequency Time to Restore

SOFT WARE DEVELOPMENT

FIVE KEY METRIC S

OPERATIONAL PERFORMANCE SOFT WARE DEPLOYMENT

https://www.weave.works/
https://cloud.google.com/blog/products/devops-sre/dora-2022-accelerate-state-of-devops-report-now-out

weave.works

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

6
▼

 The Self-service Model

Unlike the traditional ticket-based model, with a self-service developer platform, platform engineers
can access the resources developers need available through pre-created and pre-configured
services. These services are hosted on an internal developer platform, and this platform is
continuously maintained and managed by the Ops team. In essence, the platform is treated like a
product in its own right.

Enforce uniform
security policies

Operations Team
Build configuration

templates

Operations Team

Spin up resources
as per their
requirements

Development Team
Deploy applications

faster using
templates

Development Team

Avoid infrastructure
tinkering & security
mishaps

Development Team

</></> </></>

</></>

</></> </></>

Implementing a Self-Service Development Platform

In a Kubernetes-centric world, building a self-service developer experience will need to take into
account the ecosystem and practices that are prevalent in this particular ecosystem. Additionally,
as DevOps evolves, it has given rise to newer practices like GitOps that are better at meeting
the needs of developers. Let’s look at how GitOps enables you to build a self-service developer
experience.

https://www.weave.works/

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

7

weave.works

▼

 GitOps: A Self-Service Model

According to the GitOps approach, the infrastructure layer, which is powered by Kubernetes, is
defined in Git in the form of YAML files. YAML files define the number of clusters, pods in a cluster,
resource limitations for each pod, and cloud-vendor-specific configuration as well. Using GitOps,
the ops or platform team can create a resource template that is defined in YAML and that allows
developers to deploy an application on, say, AWS EKS with a certain amount of memory and
compute capacity. This template can include a commonly used toolset made up of a service mesh,
a monitoring agent, a database, or any other component a typical deployment would require. These
resources are pre-vetted by the platform team and are sure to work well with each other.

Meanwhile, developers can quickly access the resources they require in minutes without having
to learn YAML. The use of the resource template abstracts complexity for developers and the
intervention of the platform team is required only on rare occasions where the customization needs
of your developers are not met. The reduction in time for provisioning resources from weeks to
minutes is significant. It is only possible by eliminating manual decision-making and effort in the
process and replacing it with software agents and policies that are transparent and predictable.

An important part of the GitOps approach is declaring the platform infrastructure and automating
it using Git repositories. The platform is built, versioned, deployed, and managed using the
configuration in Git. Any changes are made to the repositories and are automatically ‘pulled’ into
production. Any configuration drift that occurs is automatically highlighted and corrected to the
original desired state as described in the repository.

There are many benefits of a self-service developer platform that is powered by GitOps. The table
below highlights the key differences between the traditional approach and a GitOps-based self-
service developer experience:

GitOps-based Self-Service Experience

Resources conjured in minutes

No dependency on Ops teams

Consistent process across development team

Gives developers autonomy

Applies automation to ease process

Scalable and in-built security policies

Inherent compliance audit

MTTR is minutes

Accelerates deployment speed

Non-Self-Service Experience

Takes days to provision resources

Ops team burdened with tickets

Different process across development teams

Makes developers frustrated & helpless

Complicates process with manual effort

Unscalable manual process security measures

Compliance is a separate process

MTTR is days

Slows down software delivery

https://www.weave.works/

weave.works

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

8
▼

Weave GitOps Enterprise automates cloud-native app management to reduce human-driven errors
and costs, while increasing developer productivity and operational efficiency. It is a continuous
operations product that makes it easy to deploy and manage Kubernetes clusters and applications
at scale in any environment. The single management console automates trusted application delivery
and secure infrastructure operations on-premise, in the cloud, and at the edge.

 Reduce Time and Errors With GitOps Templates

Weave GitOps eliminates the complex process of building an internal platform from scratch as
it offers the foundational building blocks as features. GitOps templates allow you to template
resources in a single definition; the resources can be anything that can be expressed in yaml
(K8s, Flux primitives, TF controller, Crossplane, Cluster API). In other words, it allows you to define
the various infrastructure and application components in the form of YAML configuration that can
be deployed repeatedly and consistently. With WGE, platform teams can provision self-service
templates that can be leveraged by application development teams. The template ensures there
are required defaults like a pipeline service, security policy-as-code configurations defined, and
progressive delivery built-in. All an application developer needs to do is click on the template, fill
in a few fields, and at the click of a button all the required YAML is automatically produced by the
template and ready to be deployed.

GitOps allows you to create a self-service experience for your developers that encourages them to
innovate faster, reduce toil, and safely deliver new code through the security checks embedded by
the platform team. It also reduces developers’ dependency on the platform teams, thus minimizing
friction between the two teams. Kubernetes runtime configurations against the policies and report
back any violations.

Download this whitepaper and learn more about GitOps and Self-service platforms.

Whitepaper: GitOps Accelerates Self-Service for Developers and Operators

Build and Manage a Self-Service Developer Platform with
Weave GitOps Enterprise

DOWNLOAD NOW

https://www.weave.works/
https://go.weave.works/WebContent-GitOps-Accelerates-Self-Service.html
https://go.weave.works/WebContent-GitOps-Accelerates-Self-Service.html

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

9

weave.works

▼

Leveraging GitOps has allowed us to create a self-service platform
for engineers so they can concentrate on delivering business value
through innovation, without the full need for Platform Team assistance.

The engineers focus on building container images and managing the testing of
their microservices and Weave Flux (Weave GitOps) handles the deployments.”

— Steve Wade, Platform Lead, Mettle

READ THE CASE STUDY

WELL
ARCHIECTED
PATTERNS

GITOPS
TEMPLATES

POLICIES

GITOPS TEMPLATES
That embed use-case
focused stacks, i.e.
observability, network
policies, etc.

POLICIES
Sets of policies to enforce
standards, secure
configurations and best
practices

WELL-ARCHITECTURE
PATTERN
Well-architected patterns;
reliability, security,
e�ciency and operational
excellence

PRE-BUILT,
SECURE & CERTIFIED
INFRASTRUCTURE
TEMPLATES

https://www.weave.works/
https://assets.contentstack.io/v3/assets/blt300387d93dabf50e/blt2214a694b93a2aed/5eb148ce432891649d6360c4/case-study-mettle_v6.pdf
https://assets.contentstack.io/v3/assets/blt300387d93dabf50e/blt2214a694b93a2aed/5eb148ce432891649d6360c4/case-study-mettle_v6.pdf

weave.works

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

10
▼

 Weave GitOps Enterprise Features

Weave GitOps Enterprise boasts a number of other distinct features that empower platform
teams to build self-service platforms:

Feature Platform Team Role Developer Benefits

⊲ Create safe perimeters between
users and applications as they share
resources via workspaces.

⊲ Define and govern policy
configurations.

⊲ Create HCL templates & merge with
a Kubernetes custom resource to
produce valid Terraform HCL code.

⊲ Create an end-to-end flow for
Terraform users & infrastructure.

⊲ Manage cloud infrastructure
beyond Kubernetes.

⊲ Can enforce automated gates and
checks to any deployment and if
these checks fail, the deployment is
automatically rolled back.

⊲ Have complete visibility into how
code is progressing through different
environments.

⊲ Create & manage developer
environments at scale.

⊲ Can tweak the policies governing
environment creation as easily as
editing a YAML file.

Workspaces &
Policy as Code
Safely manage
multi-tenant
environments.

Terraform
Controller
Manage Terraform
resources,
the GitOps way.

Pipelines
Automate release
pipelines.

GitOps Run
Automate
environment
provisioning and
tie in security
guardrails.

⊲ Have the freedom and
autonomy to use preassigned
resources without worrying
about affecting other user’s
performance and security.

⊲ No need for approvals and
unnecessary back and forth
with Ops teams.

⊲ Can use a self-service
template to set-up a new
bucket from the existing cloud
provider.

⊲ Reuse these templates to
deploy multiple instances with
different configurations.

⊲ Automate the rollout of
code from one environment
to another without human
intervention & with end-to-
end visibility.

⊲ Can define which Helm
charts are part of the
environments they create &
see which versions of their
applications are running in
which environment from a
single screen.

⊲ Can create consistent
developer environments
on-demand so they can
spend more time doing what
they do best - write code.

https://www.weave.works/

EN
A

B
LI

N
G

 A
 S

EL
F-

S
ER

V
IC

E
D

EV
EL

O
PE

R
EX

PE
R

IE
N

C
E

W
IT

H
 G

IT
O

P
S

11

weave.works

▼

Feature Platform Team Role Developer Benefits

⊲ Creates readymade templates
for new microservices that would
be used by application developers

⊲ Simplify the deployment process
for developers while having to
write little or no YAML.

⊲ Ensure requirements are built-
in such as pipeline service, policy
configuration, and progressive
delivery controls.

⊲ Create a single definition of all
the objects that are required to
successfully deploy an application.

⊲ A definition can be used to
generate the environment and
cluster-specific configuration.

⊲ Bootstrap the automation objects
for a set of environments.

GitOps
Templates
Pre-built, secure
and certified
infrastructure
templates.

GitOps Sets
A single definition
to drive many
resources across
a fleet of clusters.

⊲ Easily pick a template, fill
in a few fields, and all the
required YAML is automatically
produced by the template and
ready to be deployed.

⊲ Can merge pull requests in
Git, and the new microservice
is deployed to production,
complete with all the defaults,
and prerequisites as defined by
the platform operator.

⊲ The platform teams can
set up pull request previews
for the application teams. This
means all new code can deploy
to a dev cluster for review by
code reviewers and QA. Once
the pull request merges the
preview is removed from the
cluster.

⊲ It’s now much simpler to
configure multiple environments.

The DevOps movement is about removing silos between dev and ops teams. The platform model
meets developer and operation teams right where they are, enabling them to do what they do best.
As organizations look to move faster, deploy more frequently and become more innovative, the
platform model is set to become the norm. Large organizations like State Farm and the DoD are
trailblazers; it is time for mainstream organizations to follow in their footsteps and reap the benefits
of a self-service developer platform. Weave GitOps Enterprise and its built in GitOps principles are a
proven approach for successfully deploying and maintaining a Kubernetes platform that benefits both
developers and operators.

weave.workssales@weave.works

CONTACT US FOR A WEAVE GITOPS ENTERPRISE DEMO

https://www.weave.works/
https://www.weave.works/
https://www.weave.works/
mailto:sales@weave.works
mailto:sales@weave.works
https://www.weave.works/contact/
http://www.weave.works/contact

